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A numerical method for solving 3-D convection problems with variable viscosity
in Cartesian geometry is presented. Equations for conservation of mass, momentum,
and energy are solved using a second-order finite-volume discretization in com-
bination with a multigrid method. Viscosity variations of 10 orders of magnitude
are considered. Convergence deteriorates with increasing viscosity variations, but
modifications of the multigrid algorithm are found to improve the robustness of the
numerical method for very large viscosity contrasts. An efficient and flexible local
mesh refinement technique is presented which is applied to various convection prob-
lems with variable viscosity. Comparisons with other numerical methods reveal that
accurate results are obtained even when viscosity varies strongly.c© 2000 Academic Press
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1. INTRODUCTION

On geological time scales Earth’s solid mantle can be considered as a highly viscous
fluid. The creeping flow is predominantly thermally driven by heat from Earth’s core and
radioactive heat release in the mantle [1]. Mantle viscosity is of the order 1021 Pa s, but
it can vary by several orders of magnitude due to the strong temperature and pressure
dependence [2]. Geodynamical modeling of convection in Earth’s or in other planetary
mantles is simplified because inertia and Coriolis forces can be neglected. On the other
hand, the extreme variability of viscosity complicates the numerical solution. Despite its
well-known influence on convection patterns variable viscosity has often been ignored or
restricted in 3-D convection models because of limited computer resources. Therefore, the
development of fast numerical methods which can handle strongly variable viscosity is
important for geodynamical modeling.
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A very efficient numerical method for solving elliptic differential equations is multigrid
iteration. The basic idea of multigrid is to approximate and reduce the long-wavelength error
of the solution, which converges very slowly on grids with large numbers of grid points,
on coarser grids with successively decreasing numbers of grid points. By doing multigrid
iterations convergence rates can be obtained which are independent of the problem size.
A detailed description of the various multigrid schemes can be found, for example, in
[3–6].

The multigrid concept has been applied successfully to a wide range of problems, in-
cluding calculation of fluid flow. Various multigrid methods for solving Stokes and Navier–
Stokes equations with constant viscosity have been presented, for example in [4, 7–10].
Parmentieret al. [11] have used a multigrid solver in a 3-D convection model for iso-
viscous fluid flow in Cartesian geometry. By using the streamfunction formulation they
have been able to reduce Stokes equations to a pair of Poisson equations which are solved
by multigrid iterations. While much work has been spent on multigrid solutions of iso-
viscous fluid flow, only few papers deal with variable viscosity. Baumgardner [12] has
presented a multigrid method for solving convection problems in 3-D spherical geom-
etry. This method has been used in calculations with constant viscosity [12] as well as
with depth-dependent viscosity [13, 14] and with 3-D varying viscosity [15]. Moresi and
Solomatov [16] have presented a multigrid method for convection problems with variable
viscosity in Cartesian geometry which has been used in 2-D and in 3-D calculations [16–
18]. Stokes equations are solved by an Uzawa iteration scheme. Iteration for velocity is
carried out by a multigrid method, while a conjugate gradient scheme is used for pres-
sure iteration. Both multigrid methods are based on a finite-element discretization. Tackley
[19] has developed a multigrid method for 3-D convection problems with variable vis-
cosity in Cartesian geometry using a finite-volume discretization. This method has been
applied successfully to a variety of convection problems, e.g., [20–22], including calcu-
lations with extremely variable viscosity [23]. Trompert and Hansen [24] have presented
a different multigrid method, though they have used a similar discretization scheme. By
modifying the multigrid smoother they have been able to treat viscosity variations up to
109, but convergence of the multigrid method becomes slow if viscosity varies strongly.
Auth and Harder [25] have investigated multigrid solutions of convection problems with
strongly varying viscosity in 2-D. They have increased the stability of the multigrid method
by using more complex multigrid cycles that require only a slightly larger computational
effort.

I solve 3-D convection problems with variable viscosity in Cartesian geometry, following
the approaches given by Tackley [19] and Trompert and Hansen [24]. I have improved
these approaches by the implementation of a different multigrid scheme which can handle
local grid refinements. In typical convection problems the solution varies rapidly in some
parts of the model domain, e.g., in boundary layers or near stagnation points, while it
changes more smoothly in most other regions. This suggests to use a nonuniform numerical
grid to achieve good resolution where needed at moderate overall costs. In the context of
standard finite-difference or finite-volume techniques, uneven mesh spacing leads to more
complex difference equations and is therefore often avoided. The use of a multigrid iteration
scheme allows the implementation of a more efficient technique for creating local mesh
refinements. Such a technique is described here and is tested both for published benchmarks
and for particular problems in which large local gradients in all variables play an essential
role.
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2. GOVERNING EQUATIONS

I examine thermally driven convection in a highly viscous, incompressible fluid with infi-
nite Prandtl number in a 3-D Cartesian domain. The Boussinesq approximation is adopted.
The time-dependent fluid flow is described by the following nondimensional equations
derived from the conservation laws of mass, momentum, and energy, respectively,

∇ · v = 0, (1)

−∇p+∇ · (η(∇v+ (∇v)T ))+ RaTez = 0, (2)

∂T

∂t
+∇ · (vT) =∇2T. (3)

v= (u, v, w) means velocity,p is the nonhydrostatic pressure component,η dynamic vis-
cosity,T temperature,ez unit vector antiparallel to the direction of gravity, andt time.

Equations (1)–(3) contain only one dimensionless parameter, the Rayleigh number Ra,
which is defined by

Ra= ρ0αg1T h3

κη0
,

with α thermal expansivity,g gravitational acceleration,1T temperature drop across the
box, h height of the box,κ thermal diffusivity, andρ0 andη0 reference values of density
and viscosity, respectively. The equations are scaled withh (length), h2/κ (time), 1T
(temperature), andη0κ/h2 (pressure).

Viscosity depends on temperature and depth. The variability of the nondimensional vis-
cosity is described by Arrhenius law,

η = Aexp

(
E1+ E2(1− z)

T + E3

)
, (4a)

or by a temperature-dependence of the form

η = exp(−E4T), (4b)

with parametersE1–E4 controlling the temperature and depth dependence andA defining
the reference value of viscosity.

3. NUMERICAL METHOD

3.1. Finite-Volume Discretization

The model domain is divided into uniform cellsÄi jk with i, j, k being indices inx-,
y-, andz-direction, respectively. A staggered grid is used. Temperature and pressure are
located at the center of the grid cells the velocity components at the center of the cell faces
normal to the direction of the velocity components (Fig. 1).

This staggered grid was first introduced by Harlow and Welch [26] and afterward used
in most of the numerical methods based on the primitive variable formulation, e.g., [7, 19,
24, 25, 27]. By this kind of discretization artificial pressure and velocity oscillations are
avoided [28] and greater accuracy than on nonstaggered grids is obtained [29].
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FIG. 1. Staggered grid location of variables in grid cellÄi jk .

Equations (1)–(3) are discretized using a second-order control-volume method. The
model domain is divided into control volumes which must not necessarily correspond to
the grid cells. The equations are integrated over these volumes. The discretized equations
are obtained by approximating the required integrals by the grid point values. The most at-
tractive feature of the control-volume formulation is that the resulting solution satisfies the
conservation of mass, momentum, and energy exactly over the control volume, independent
of the number of grid points. A detailed description of the control-volume discretization of
the governing equations on a staggered grid can be found, for example, in [6, 28].

The continuity Eq. (1) is integrated over control volumes that match with the grid cells,
yielding

ui jk − ui−1 jk

1x
+ vi jk − vi j−1k

1y
+ wi jk − wi jk−1

1z
= 0, (5)

with 1x,1y, and1z grid spacing inx-, y-, andz-direction, respectively.
The control volumes of the momentum Eq. (2) are staggered in the same way as velocity,

resulting in the following set of discretized equations,

− pi+1 jk − pi jk

1x
+ τ xx

i+1 jk − τ xx
i jk

1x
+ τ

xy
i jk − τ xy

i j−1k

1y
+ τ

xz
i jk − τ xz

i jk−1

1z
= 0, (6a)

− pi j+1k − pi jk

1y
+ τ

xy
i jk − τ xy

i−1 jk

1x
+ τ

yy
i j+1k − τ yy

i jk

1y
+ τ

yz
i jk − τ yz

i jk−1

1z
= 0, (6b)

− pi jk+1− pi jk

1z
+ τ xz

i jk − τ xz
i−1 jk

1x
+ τ

yz
i jk − τ yz

i j−1k

1y
+ τ

zz
i jk+1− τ zz

i jk

1z
= −Ra

Ti jk+1+ Ti jk

2
,

(6c)

with

τ xx
i jk = 2ηi jk

ui jk − ui−1 jk

1x
,

τ
yy
i jk = 2ηi jk

vi jk − vi j−1k

1y
,
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τ zz
i jk = 2ηi jk

wi jk − wi jk−1

1z
,

τ
xy
i jk = ηxy

i jk

(
ui j+1k − ui jk

1y
+ vi+1 jk − vi jk

1x

)
,

τ xz
i jk = ηxz

i jk

(
ui jk+1− ui jk

1z
+ wi+1 jk − wi jk

1x

)
,

τ
yz
i jk = ηyz

i jk

(
vi jk+1− vi jk

1z
+ wi j+1k − wi jk

1y

)
.

The viscosityηi jk is defined at the center of the grid cells. It is calculated from temperature
and depth using (4a) or (4b). Additional viscosity valuesη

xy
i jk , η

xz
i jk , η

yz
i jk at the midpoints of

cell edges (Fig. 1) are interpolated from the four surrounding cell-centered viscosities.
Following the general approach of discretizing equations with discontinuous coefficients
given by Wesseling [6, 30], a method based on continuity of stress at cell faces has to be used,
if viscosity differs strongly between adjacent cells. Continuity of stress can be satisfied by
using harmonic interpolation for viscosity at cell edges. This kind of interpolation has been
used by Ogawaet al. [27]. However, in the method presented here harmonic interpolation
does not lead to more accurate results than bilinear interpolation. Therefore, the simpler
bilinear interpolation has been used.

The energy Eq. (3) is discretized in time using a finite-difference method with implicit
treatment of the advection and diffusion terms,

Tn+1− Tn

1t
= 2(∇2Tn+1−∇(vT)n+1)+ (1−2)(∇2Tn −∇(vT)n), (7)

where1t is the time step size and the superscriptsn andn+ 1 denote values at old and
new time, respectively. While the explicit scheme (2= 0) is stable only for small time
steps, schemes with2≥ 0.5 are unconditionally stable. The fully implicit backward Euler
scheme (2= 1) with large time steps is used for calculating steady-state solutions. For time-
dependent fluid flow the second-order accurate implicit Crank–Nicolson scheme (2= 0.5)
is used with a time step size limited by the Courant criterion,

1t < min

( |u|
1x
+ |v|
1y
+ |w|
1z

)−1

.

Although the time-stepping scheme is unconditionally stable the Courant condition has
been applied to time-dependent solutions in order to achieve good resolution in time.

For the spatial discretization I have integrated (7) over the grid cell volume. Afterward the
discretized continuity Eq. (5) multiplied by the temperature is subtracted to avoid numerical
instabilities [28], yielding

Tn+1
i jk +21t Jn+1

i jk = Tn
i jk − (1−2)1t Jn

i jk , (8)

with

Ji jk =
Jx

i+ 1
2 jk
− Jx

i− 1
2 jk

1x
+

Jy
i j+ 1

2 k
− Jy

i j− 1
2 k

1y
+

Jz
i jk+ 1

2
− Jz

i jk− 1
2

1z
,
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and

Jx
i+ 1

2 jk = (uT)i+ 1
2 jk −

Ti+1 jk − Ti jk

1x
− ui jk Ti jk ,

Jy
i j+ 1

2 k
= (vT)i j+ 1

2 k −
Ti j+1k − Ti jk

1y
− ui jk Ti jk ,

Jz
i jk+ 1

2
= (wT)i jk+ 1

2
− Ti jk+1− Ti jk

1z
− wi jk Ti jk .

The diffusion term is approximated by central differences while an upwind scheme is used
for the advection term. Two different schemes have been implemented, namely the upwind-
biased Fromm scheme used by Trompert and Hansen [24] and the power-law scheme given
by Patankar [28]. The advective heat flux inx-directionuT at cell boundary(i + 1

2, j, k) is
given in the Fromm scheme by

(uT)i+ 1
2 jk = max(ui jk , 0)

(
Ti jk + 1

4
(Ti+1 jk − Ti−1 jk)

)
+min(ui jk , 0)

(
Ti+1 jk − 1

4
(Ti+2 jk − Ti jk )

)
, (9)

and in the power-law scheme by

(uT)i+ 1
2 jk =

(
max(ui jk , 0)+

max((1− 0.1 · |Pei jk |)5, 0
)− 1

1x

)
Ti jk

+
(

min(ui jk , 0)− max((1− 0.1 · |Pei jk |)5, 0)− 1

1x

)
Ti+1 jk, (10)

and similarly at other cell boundaries. Pei jk = ui jk1x is the local grid Peclet number. For
large Peclet numbers(|Pei jk | ≥10) the power-law scheme reduces to the first-order upwind
scheme with neglected diffusion term. For small Peclet numbers it comes closer to the
central scheme [28].

In the following the discretized equations (5), (6a)–(6c), and (8) are formally written as
matrix equation A(η(T)) G B

D 0 0

0 0 C(v)


v

p

T

 =
 f

f4

f5

 . (11)

Nonlinearities occur in the advection term of the energy equation and in the viscous force
term of the momentum equation due to the temperature-dependence of viscosity.

3.2. Multigrid Method

The discretized Eqs. (11) are solved using a multigrid method. In contrast to most of the
previous multigrid methods I use the full-approximation-storage (FAS) algorithm [3, 4] in
which the full solution is calculated at all grid levels. Fine and coarser grids differ only in
the way of calculating the right-hand-side of (11). This is different from other multigrid
algorithms which calculate residuals and corrections instead of the full solution at coarser
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grids. The algorithm starts at the finest grid and visits all coarser grids in the order given by
the multigrid cycle. A standard cell-centered coarsening is applied meaning that one coarse
grid cell includes eight fine grid cells. Although the implemented algorithm is suitable for
nonlinear differential equations, I have linearized (11). The matricesA(η(T)) andC(v)
in (11) are computed on all grids in advance using the values ofT andv obtained in the
previous multigrid cycle. At the end of each multigrid cycle they are recomputed.

Two different strategies for solving (11) have been implemented. The first one solves all
equations in a coupled manner yielding second-order accuracy both in space and time. In the
second one the energy equation is decoupled from the continuity and momentum equations
by using the velocity at old time in the advection term. The temperature at new time is
calculated first. Afterward new velocity and pressure are computed from the temperature.
This strategy reduces the accuracy to first order in time, but it is computationally cheaper
than the coupled solution and more robust when large time steps are used. Therefore, it
is prefered for calculating steady-state solutions, whereas the coupled solution strategy is
used for time-dependent calculations.

3.2.1. Smoother.Because of the occurrence of a zero block on the main diagonal in (11),
basic iterative methods like Jacobi or Gauss–Seidel which make use of the inverse of the main
diagonal, cannot be applied as smoother. Smoothing methods of the distributive iteration
type are necessary. I have implemented the SIMPLER (semi implicit method for pressure-
linked equations revised) algorithm by Patankar [28], because with slight modifications its
suitability for calculations with strongly variable viscosity has been shown [24, 31].

The SIMPLER method can be split in following parts:

1. Calculation of new temperature using energy equation.
2. Calculation of new pressure using

−DS−1Gp= f4− D(v+ S−1( f − BT − Av)), (12)

with Sdiagonal of matrixA. This pressure equation is obtained by combining momentum
and continuity equations.

3. Calculation of new velocity using momentum equation.
4. Calculation of a pressure correctionδp using

−DS−1Gδp = f4− Dv. (13)

5. Correction of velocity by adding−S−1Gδp to fulfill continuity equation.

In the case of a decoupled solution strategy step 1 is left out and new temperature is calculated
in separate multigrid cycles.

The calculations in steps 1–4 are carried out by single pointwise Gauß–Seidel iterations.
If the Fromm scheme is used for the advective heat flux, matrixC is not diagonally dominant
and basic iterative methods are not applicable. The defect-correction iteration [32] has been
applied. Instead of solvingCT= f5 the defect-correction equation

C̃T = f5− (C − C̃) T, (14)

with C̃ containing the first-order upwind scheme for advection is solved. The right-hand
side is recomputed after each multigrid cycle. BecauseC̃ is diagonally dominant pointwise
Gauß–Seidel iteration is applicable to (14).
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3.2.2. Prolongation and restriction.In multigrid methods data have to be transfered
from fine to coarse grids (restriction) and from coarse to fine grids (prolongation). In order
to obtain a mesh size independent rate of convergence the prolongation and restriction
operators have to satisfy

mP+mR > 2m, (15)

wheremP andmR are defined as the orders of interpolation plus one used for prolongation
and restriction and 2m is the order of the partial differential equation to be solved [5,
6, 33].

I use linear interpolation for prolongation. Temperature and pressure of the fine grid are
expressed by Taylor series expansions around the coarse grid points up to first-order terms,
e.g.,

T2i 2 j 2k = T̄i jk + Tx + Ty + Tz,

T2i−12j 2k = T̄i jk − Tx + Ty + Tz,

T2i 2 j−12k = T̄i jk + Tx − Ty + Tz,
...

T2i−12j−12k−1 = T̄i jk − Tx − Ty − Tz,

with

Tx = T̄i+1 jk − T̄i−1 jk

8
,

Ty = T̄i j+1k − T̄i j−1k

8
,

Tz = T̄i jk+1− T̄i jk−1

8
,

and similarly for pressure. Overbars denote coarse grid values. Because velocity is de-
fined at the center of cell faces modified prolongation operators have to be used. For
velocity components of the fine grid that belong to coarse grid cell faces Taylor se-
ries expansions in the directions perpendicular to the velocity components are applied,
e.g.,

u2i 2 j 2k = ūi jk + uy + uz,

u2i 2 j−12k = ūi jk − uy + uz,

u2i 2 j 2k−1 = ūi jk + uy − uz,

u2i 2 j−12k−1 = ūi jk − uy − uz,

with

uy = ūi j+1k − ūi j−1k

8
,

uz = ūi jk+1− ūi jk−1

8
.
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Afterward the velocity components at intermediate fine grid cell faces are interpolated
from the fine grid values belonging to coarse grid cell faces, e.g.,

u2i−12j 2k = u2i 2 j 2k + u2i−22j 2k

2
,

u2i−12j−12k = u2i 2 j−12k + u2i−22j−12k

2
,

u2i−12j 2k−1 = u2i 2 j 2k−1+ u2i−22j 2k−1

2
,

u2i−12j−12k−1 = u2i 2 j−12k−1+ u2i−22j−12k−1

2
.

The prolongation operators for the other velocity components are obtained in a similar way.
For restriction the coarse grid values of temperature and pressure are computed by aver-

aging the fine grid values of the eight corresponding fine grid cells, e.g.,

T̄i jk = T2i 2 j 2k + T2i−12j 2k + T2i 2 j−12k + · · · + T2i−12j−12k−1

8
,

and similarly for pressure. For velocity the fine grid values are weighted in the direction
of the velocity component by using the inverse of linear interpolation and are averaged in
perpendicular directions, e.g.,

ūi jk = ũ2i−1 jk + 2ũ2i jk + ũ2i+1 jk

4
,

with

ũ2i jk = u2i 2 j 2k + u2i 2 j−12k + u2i 2 j 2k−1+ u2i 2 j−12k−1

4
,

and similarly for other velocity components.
In problems with discontinuous coefficients standard transfer operators are sufficient

for cell-centered discretization, but for vertex-centered discretization operator-dependent
prolongation and restriction operators have to be used [6, 30, 34]. In the staggered grid
formulation a vertex-centered discretization is applied for velocity components in the di-
rection of the velocity components. Following the approach given by Alcouffeet al. [35]
I have used prolongation and restriction operators, which fulfill the continuity of stress at
intermediate cell faces. No significant differences have been found between standard and
operator-dependent transfer operators. Therefore, the prolongation and restriction operators
described above have been finally implemented.

The residuals of (11) also have to be transfered to coarser grids. The same restriction
operators have been used for variables and residuals. With these operators for prolongation
and restriction I obtainmP= 2 andmR= 1 and satisfy condition (15) for second-order
differential equations.

3.2.3. Coarse grid approximation.In multigrid methods the fine grid Eq. (11) has
to be approximated by coarse grid equations. There are basically two different ways of
calculating the coarse grid matrices. In the discretization coarse grid approximation [6] the
coarse grid matrices are obtained in the same way as the fine grid matrix by discretizing the
differential equation. Therefore, the coarse grid approximation is straightforward, but it can
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be insufficient on very coarse grids if the differential equation contains strongly variable
coefficients. In the Galerkin coarse grid approximation [6] the coarse grid matrixM̄ is
calculated from the fine grid matrixM by

M̄ = RM P,

with R andP restriction and prolongation operators. The stencil of the coarse grid matrix
depends on the choice of restriction and prolongation operators. In order to avoid that most
of the computational work which is saved by doing calculations on coarser grids with less
grid points is consumed by more complicated coarse grid matrices, it is essential to use
restriction and prolongation operators that increase the stencil of the coarse grid matrices
as little as possible. Such transfer operators for the 2-D Navier–Stokes equations have
been presented by Zeng and Wesseling [10]. The Galerkin coarse grid approximation is
often used for differential equations with discontinuous coefficients, for example in [10, 30,
34–37].

Because of simplicity I have implemented the discretization coarse grid approximation.
In order to calculate the coarse grid matrices the viscosity has to be known on coarser grids.
I use restriction of viscosity from finer grids. The viscosity at the center of the coarse grid
cell is computed by averaging the cell-centered viscosities of the eight corresponding fine
grid cells,

η̄i jk = η2i 2 j 2k + η2i−12j 2k + η2i 2 j−12k + · · · + η2i−12j−12k−1

8
. (16a)

Other viscosities are transferred to coarser grids by using the inverse of bilinear interpolation,
yielding

η̄
xy
i jk =

η̃
xy
2i−12j−12k + 2η̃xy

2i 2 j−12k + η̃xy
2i+12j−12k

16

+ 2η̃xy
2i−12j 2k + 4η̃xy

2i 2 j 2k + 2η̃xy
2i+12j 2k

16

+ η̃
xy
2i−12j+12k + 2η̃xy

2i 2 j+12k + η̃xy
2i+12j+12k

16
, (16b)

η̄xz
i jk =

η̃xz
2i−12j 2k−1+ 2η̃xz

2i 2 j 2k−1+ η̃xz
2i+12j 2k−1

16

+ 2η̃xz
2i−12j 2k + 4η̃xz

2i 2 j 2k + 2η̃xz
2i+12j 2k

16

+ η̃
xz
2i−12j 2k+1+ 2η̃xz

2i 2 j 2k+1+ η̃xz
2i+12j 2k+1

16
, (16c)

η̄
yz
i jk =

η̃
yz
2i 2 j−12k−1+ 2η̃yz

2i 2 j 2k−1+ η̃yz
2i 2 j+12k−1

16

+ 2η̃yz
2i 2 j−12k + 4η̃yz

2i 2 j 2k + 2η̃yz
2i 2 j+12k

16

+ η̃
yz
2i 2 j−12k+1+ 2η̃yz

2i 2 j 2k+1+ η̃yz
2i 2 j+12k+1

16
, (16d)
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with

η̃
xy
2i 2 j 2k =

η
xy
2i 2 j 2k + ηxy

2i 2 j 2k−1

2
,

η̃xz
2i 2 j 2k =

ηxz
2i 2 j 2k + ηxz

2i 2 j−12k

2
,

η̃
yz
2i 2 j 2k =

η
yz
2i 2 j 2k + ηyz

2i−12j 2k

2
.

3.3. Local Mesh Refinements

Multigrid methods offer a very efficient and flexible technique for creating local mesh
refinements. The nonuniform grid is generated by the same set of uniform subgrids which
are used in the multigrid method. Local mesh refinements are introduced by some of the
finest grids covering only parts of the model domain. A 2-D example is shown in Fig. 2.
Because the iteration process of the multigrid method takes places on uniform grids the
discretization scheme does not have to be changed if grid refinements are introduced. The
difference equations which have to be solved remain as simple as in the case without grid

FIG. 2. Generation of a nonuniform grid by a set of uniform subgrids (2-D example). On refinement levels
grids cover only parts of the model domain. Thick lines represent interior grid boundaries that are not boundaries
of the model domain.
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FIG. 3. Location of variables on a nonuniform staggered grid (2-D example). At interior boundaries of the
grid refinement variables are interpolated from the coarse grid.

refinements. The only modification occurs in the calculation of the right-hand side. It has
to be taken into account that a coarse-grid correction is calculated in regions where finer
grids exist, while in other parts of the model domain the grid acts as the finest grid. It is
compatible with the FAS-algorithm to have different finest grids in different regions because
the full solution is treated at all grid levels, whereas there is a conflict in other multigrid
algorithms in having correction of the fine grid solution in some regions and full solution in
others. A detailed description of this mesh refinement method can be found, for example, in
[3, 38].

On refinement levels (levels on which grids do not extend over the whole model do-
main) grids contain interior boundaries that are not boundaries of the model domain (thick
lines in Fig. 2). Therefore, no boundary conditions can be applied. In order to define the
difference equations at these boundaries values for temperature, pressure, and velocity are
interpolated from the next coarser grid. Figure 3 shows the staggered grid locations of the
interpolated values. The accuracy of the numerical solution depends on the order of this
interpolation. The error introduced by the interpolation should be not larger than the local
truncation error which is of orderm+ p with m order of the differential equation andp
approximation order [38]. In this case withm= p= 2 the interpolation should be at least
of fourth order. Therefore, cubic interpolation for calculating values at interior boundaries
have been implemented.

By using this refinement method the number of grid points does not necessarily decrease
on coarser grids. Multigrid cycles that use coarser grids more than once during each cycle,
e.g., F or W cycles, do not provide a linear dependence of computational work on number
of grid points. A modified algorithm based on a work-to-accuracy exchange rate has been
developed by Bai and Brandt [38], which obtains the usual multigrid efficiency. I have
implemented a simpler approach using modified multigrid cycles. On global grid levels
all usual multigrid cycles are allowed, but on refinement levels they are always changed
to V cycles. V cycles visit coarser grids only once during each cycle. This modification
minimizes the increase of computational work due to local mesh refinements.
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4. RESULTS

4.1. Convergence Tests

In previous investigations convergence problems of the multigrid method have been re-
ported if viscosity varies strongly [19, 24, 25]. In this section different variants of the
multigrid method have been tested. Their convergence behavior in calculations with large
viscosity variations has been determined, in order to find the best implementation for geo-
dynamical convection problems.

Convergence tests have been done by solving Stokes equations only for a prescribed
temperature field. Temperature has been taken from a 3-D time-dependent calculation in
a box with 64× 64× 64 equally spaced grid cells. Temperature is fixed to zero at the top
and to one at the bottom. Reflecting symmetry is assumed at the sidewall, zero shear stress
at all boundaries. Viscosity depends on temperature according to (4b) withE4= ln(105).
The Rayleigh number is Ra= 1000 based on viscosityη(T = 0). The calculation has been
started from a conductive temperature distribution to which small-scale perturbations have
been added.

Three different temperature fields have been used in the convergence tests. Temperature 1
(Fig. 4, top) is taken from an early stage of the time evolution, with diapiric thermal plumes
rising from an unstable bottom boundary layer. Temperature 2 (Fig. 4, middle) belongs to a
transient stage during time evolution when the flow structure is reorganized. Temperature 3
(Fig. 4, bottom) shows two major upwellings beneath a top boundary layer which covers
most of the temperature drop across the box. These temperature fields have been chosen
because they provide a different distribution of local viscosity gradients. In temperature 1
viscosity varies strongly in the bottom boundary layer and in the rising plume heads. Because
of the complicated structure of temperature 2, local viscosity gradients occur throughout
the box, but they are not as large as in temperature 1. In temperature 3 the interior of the box
is nearly isoviscous and most of the global viscosity contrast is covered by the top boundary
layer.

Although temperature has been prescribed in the convergence tests the viscosity contrast
has been varied by changing the temperature-dependence of viscosity. The convergence
behavior of different multigrid variants is shown in Fig. 5. The number of multigrid cycles
which are required for reducing the initialL2-norm of the residual by eight orders of
magnitude is presented as a function of the global viscosity contrast. V, F, and W cycles
have been used with two pre- and postsmoothers. In addition, modifications of the V and
W cycles have been tested. In the modified W cycle the number of pre- and postsmoothers
have been increased by a factor of 2 from one grid to the next coarser grid. In the modified
V cycle they have been successively increased by a factor of 4, leading to the same total
number of smoothing iterations on coarser grids in the modified V and W cycles. F, W,
and the modified V and W cycles are approximately 15, 20, and 50% more expensive,
respectively, than V cycles.

The convergence rates deteriorate with the increasing variability of viscosity for all
multigrid variants. Above a certain viscosity contrast the numerical method diverges. The
multigrid method becomes more stable if more complex multigrid cycles instead of the
most simple V cycle are used, in agreement with results obtained in 2-D [25]. Comparison
of modified V and W cycles reveal that this improvement is not caused by the order in which
the coarser grids are visited but by the total number of smoothing iterations on coarser grids.
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FIG. 4. Temperature fields of a 3-D time dependent calculation with variable viscosity att ≈ 0.0004 (top,
isosurfaceT = 0.85), t ≈ 0.032 (middle, isosurfaceT = 0.88), andt ≈ 0.060 (bottom, isosurfaceT = 0.90).

If the number of iterations at each level is equalized the robustness of V and W cycles is
similar.

Convergence rates of the modified V and W cycles are acceptable for global viscosity
variations up to 108 for temperature 1 (Fig. 5, top) which is equivalent to local viscosity
contrasts of 24,000 over one grid cell in the bottom boundary layer. For temperatures 2 and
3 global viscosity variations of 1010 and 109, respectively, have been reached (Fig. 5, middle
and bottom, respectively). However, these larger global viscosity variations belong to local
viscosity contrasts of 1700 and 700 over one grid cell which are much smaller than the
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FIG. 5. Multigrid convergence for temperature fields given in Fig. 4: temperature 1 (top), temperature 2
(middle), and temperature 3 (bottom). V cycles (dashed), F cycles (long dashed), W cycles (dot-dashed), modified
V cycles (dotted), and modified W cycles (solid) are used. The curves end when divergence of the multigrid method
occurs.

local viscosity contrast that has been obtained for temperature 1. This indicates that neither
the global viscosity variations nor the local viscosity contrasts by themselves control the
convergence behavior of the multigrid method. It seems that the volumetrical distribution
of viscosity variations is just as important.

The robustness of the multigrid method is extremely sensitive to the kind of viscosity
calculation on coarser grids if viscosity varies strongly. I have used different methods, in-
cluding direct calculation from the functional dependence on temperature and depth and
restriction from finer grids. It turned out that calculation of viscosity directly from temper-
ature and depth on coarser grids is not suitable, consistent with 2-D results [25]. Various
restriction operators, including the viscosity restriction presented by Trompert and Hansen
[24], yield good convergence rates for some temperature distributions but not for others.
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The viscosity restriction (16a)–(16d) that was finally implemented has produced on average
the best results for all temperature distributions.

The convergence tests show that acceptable convergence rates of the multigrid method are
obtained for global viscosity variations up to at least eight orders of magnitude. Calculations
with even larger viscosity variations have been done by increasing the number of pre-
and postsmoothers in the multigrid algorithm. An alternative way for making multigrid
methods more stable has been presented by Trompert and Hansen [24]. They have found that
convergence problems can be reduced by solving the pressure (12) and pressure-correction
(13) equations of the SIMPLER iteration more accurately. However, both modifications
make the numerical method significantly more expensive.

4.2. Benchmark Calculations

In this section the verification of the code is described. Because no analytic solution is
available for the general variable viscosity case, the correctness of the numerical solution
has been verified by comparing benchmark results that have been published for both 2-D
and 3-D convection problems with infinite Prandtl number [39, 40]. Global averaged values
like the Nusselt number at the top boundary,

Nu= − 1

l xl y

∫
∂T

∂z
(x, y, z= 1) dx dy,

the root-mean-square velocity,

vrms=
(

1

l xl y

∫
(u2+ v2+ w2) dx dy dz

)1/2

,

and horizontal averaged temperatures,

〈T〉z = 1

l xl y

∫
T(x, y, z) dx dy,

with l x and l y scaled lengths of the box inx- and y-directions have been calculated. In
addition, local values like temperature gradients,

q = −∂T

∂z
,

and temperature and velocity at specified points have been compared, which indicate more
clearly whether local features are accurately resolved.

Benchmark calculations with variable viscosity in 2-D (problems 1 and 2) and in 3-D
(problem 3) have been done. Problem 1 corresponds to case 2a in [39]. Stationary con-
vection with temperature-dependent viscosity in a square box is studied. Variable viscosity
according to (4b) withE4= ln(103) is used. Temperature is fixed to zero at the top and to
one at the bottom. Reflecting symmetry is assumed at the sidewalls, zero shear stress at all
boundaries. The Rayleigh number is Ra= 10,000 based on viscosityη(T = 0). A single
convection cell develops with thin boundary layers at the top and bottom. The temperature
field is shown in Fig. 6. Benchmark results are given in Table 1.

Problem 2 is a modification of this benchmark case with much larger viscosity con-
trast. All boundary conditions and model parameters are the same, except Ra= 0.3 and
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TABLE I

Benchmark Results for Problem 1

Grid Nu vrms q1 q2 q3 q4

Benchmark — 10.0660 480.4334 17.5314 1.0085 26.8085 0.4974

I 32× 32 10.9823 434.1955 22.5323 0.8369 21.4052 1.3240
48× 48 10.4675 467.0277 19.4143 0.9321 24.0071 0.7891
64× 64 10.2907 475.2379 18.5086 0.9664 25.4672 0.6321
96× 96 10.1683 479.2123 17.9482 0.9902 26.5126 0.5400

Extrapol. 10.0761 480.2397 17.5849 1.0076 27.1441 0.4909

II 32× 32 10.6340 446.3899 21.8312 1.0591 20.8398 4.1433
48× 48 10.2298 468.2643 18.9488 1.0245 23.7434 2.3037
64× 64 10.1331 473.6656 18.2383 1.0151 25.1229 1.4430
96× 96 10.0855 477.2843 17.8193 1.0099 26.1127 0.8739

Extrapol. 10.0690 480.6073 17.5297 1.0074 26.7742 0.5835

III 32× 32 10.9346 437.1142 22.1751 0.8583 21.2425 1.3496
48× 48 10.5298 467.8947 19.7232 0.9368 24.1876 0.7965
64× 64 10.3391 475.8778 18.7354 0.9687 25.7341 0.6344
96× 96 10.1935 479.5787 18.0605 0.9912 26.7861 0.5405

Extrapol. 10.0788 479.9999 17.6252 1.0070 27.3365 0.4928

IV 16× 16 10.2540 465.3548 18.3486 0.9691 25.4857 0.6315
24× 24 10.1531 474.7340 17.9082 0.9869 26.5948 0.5441
32× 32 10.1187 477.5832 17.7531 0.9949 26.8368 0.5187
48× 48 10.0915 479.2310 17.6357 1.0015 26.8936 0.5047

Extrapol. 10.0647 480.0172 17.5302 1.0077 26.7858 0.4990

Note. Temperature gradientsq1–q4 have been calculated at(x, z)= (0, 1), (1, 1), (1, 0), and (0, 0). I, uniform
grid using bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; II, same as I, except
using power-law scheme for advection; III, same as I, except using harmonic interpolation for viscosity; IV, same as
I, except using nonequal distribution of grid cells. Given numbers of grid cells belong to the finest global grid. Two
refinement levels have been added. The first covers the region{(x, z): x≤ 0.25∨ x≥ 0.75∨ z≤ 0.25∨ z≥ 0.75}.
The second covers the region{(x, z): x≤ 0.125∨ x≥ 0.875∨ z≤ 0.125∨ z≥ 0.875}. The total number of grid
cells are 2176, 4896, 8704, and 19584.

FIG. 6. Stationary 2-D convection with variable viscosity (problem 1).
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FIG. 7. Stationary 2-D convection with extremely variable viscosity (problem 2).

E4= ln(108). Because of the strong temperature-dependence of viscosity a highly viscous
stagnant lid develops at the top boundary. Results can be found in Fig. 7 and Table II.

Problem 3 is equivalent to case 2 in [40]. Stationary square-cell convection in Carte-
sian geometry is studied with plume-like up- and downwellings. Viscosity depends moder-
ately on temperature according to (4a) withA= exp(−E1/(0.5+ E3)), E1= 225/ln (1η)-
0.25 ln(1η), E2= 0, E3= 15/ln (1η)-0.5, and a maximum viscosity contrast1η= 20.
Temperature is fixed to zero at the top and to one at the bottom. Both boundaries are rigid.
Reflecting symmetry is assumed at all sidewalls. The Rayleigh number is Ra= 20,000 based
on viscosityη(T = 0.5). Two isosurfaces of temperature are shown in Fig. 8. Benchmark
results are given in Table III.

Solutions have been obtained on successively refined grids, allowing extrapolation of
results. All extrapolated values are close to the published benchmark results. Because of

TABLE II

Benchmark Results for Problem 2

Grid Nu vrms q1 q2 q3 q4

I 32× 32 2.3076 246.2311 2.8278 1.8470 5.5275 0.2576
48× 48 2.4041 261.6192 2.9859 1.8974 6.9135 0.2403
64× 64 2.4377 266.3594 3.0388 1.9147 7.5930 0.1986
96× 96 2.4603 268.7643 3.0737 1.9261 8.0841 0.1727

Extrapol. 2.4759 269.1685 3.0974 1.9336 8.4133 0.1592

III 32× 32 2.5113 256.3763 3.2438 1.9017 5.9361 0.3932
48× 48 2.5088 267.4990 3.1986 1.9255 7.1679 0.2506
64× 64 2.4993 269.9527 3.1632 1.9314 7.7753 0.2030
96× 96 2.4885 270.4448 3.1303 1.9339 8.1981 0.1743

Extrapol. 2.4759 269.1178 3.0977 1.9337 8.4493 0.1600

Note. Temperature gradientsq1–q4 have been calculated at(x, z)= (0, 1), (1,1), (1, 0), and (0, 0). I, uniform
grid using bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; III, same as I, except
using harmonic interpolation for viscosity.
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FIG. 8. Stationary 3-D convection with variable viscosity (problem 3). Two temperature isosurfaces (T = 0.85
andT = 0.3) are shown.

smaller viscosity variations in problem 3 fewer grid points are needed to get accurate results
than for problems 1 and 2.

Problem 1 has been solved using Fromm scheme (9) and power-law scheme (10) for ad-
vection. Both upwind schemes lead to solutions with similar accuracy. Only the heat flux at
the lower left corner is less accurate if the power-law scheme is used (Table I). Bilinear and
harmonic interpolation for viscosity at cell edges have been compared in problems 1 and 2.
No significant differences can be observed in problem 1 (Table I). Only if viscosity varies
more strongly harmonic interpolation becomes more accurate than bilinear interpolation
(Table II). The local mesh refinement technique has been verified in problems 1 and 3. In

TABLE III

Benchmark Results for Problem 3

Grid Nu vrms 〈T〉0.5 〈T〉0.75 TP wP

Benchmark — 3.0393 35.13 0.5816 0.5659 0.9053 165.9

I 16× 16× 16 3.0849 35.9987 0.6047 0.5787 0.9199 168.5796
24× 24× 24 3.0648 35.5494 0.5925 0.5722 0.9129 167.6117
32× 32× 32 3.0548 35.3692 0.5878 0.5696 0.9098 166.9876
48× 48× 48 3.0466 35.2341 0.5844 0.5676 0.9074 166.4375

Extrapol. 3.0393 35.1233 0.5818 0.5659 0.9054 165.9184

IV 12× 12× 12 3.0566 35.5856 0.5992 0.5674 0.9157 165.2988
18× 18× 18 3.0462 35.3058 0.5898 0.5839 0.9105 165.5992
24× 24× 24 3.0424 35.2185 0.5864 0.5662 0.9084 165.6593
36× 36× 36 3.0397 35.1610 0.5839 0.5660 0.9069 165.7218

Extrapol. 3.0376 35.1197 0.5818 0.5659 0.9058 165.8242

Note. TemperatureTP and vertical velocitywP have been taken from(x, y, z)= (0, 0, 0.5). I, uniform grid using
bilinear interpolation for viscosity at cell edges and Fromm scheme for advection; IV, same as I, except using
nonequal distribution of grid cells. Given numbers of grid cells belong to the finest global grid. One refinement level
has been added covering the region{(x, y, z): (x≤ 1/3∧ y≤ 1/3)∨ (x≥ 2/3∧ y≥ 2/3)∨ z≤ 1/6∨ z≥ 5/6}.
The total number of grid cells are 7552, 25488, 60416, and 203904.
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problem 1 a nonuniform grid with a factor of 4 smaller grid spacing near the boundaries has
been used. In problem 3 the grid spacing has been decreased by a factor of 2 in the top and
bottom boundary layers and in the up- and downwelling corners (see Tables I and III for a
detailed description of the grid structures). Using local mesh refinements leads to more accu-
rate results compared to calculations in which the same total number of grid cells are equally
spaced. The improvement of accuracy by increasing the resolution in the critical regions is
comparable to the improvement by increasing the resolution everywhere (Tables I and III).

4.3. Convection Problems with Large Viscosity Gradients

In geodynamical modeling viscosity gradients which are much larger than in published
benchmarks are important. Even in problem 2 viscosity varies only moderately in the interior
of the convection cell because most of the viscosity contrast is covered by the stagnant lid. In
this section the accuracy of various numerical methods for convection problems with large
local gradients in all variables is examined. The numerical solution of the finite-volume
multigrid method presented here is compared with numerical solutions obtained by a third
order convergent finite-element method [41] and by a hybrid method using finite differences
in vertical direction and a spectral formulation in horizontal direction [42].

The test problem is motivated by studies of the interaction of thermal plumes in Earth’s
mantle with a spreading oceanic ridge [43–45]. Thermal plumes have been proposed to
transport hot material from deep in Earth’s mantle to the base of the lithosphere. At ridges
the plume material may rise up to even shallower depths because the lithosphere is thinned
by the diverging plate motion. Studies of plume–ridge interaction are numerically very
demanding because in the corner-flow region of the ridge the viscosity gradients become
extremely large. The problem is intrinsically 3-D but because only a 2-D version is available
for the high-order finite-element code, I restrict the problem to 2-D where the cylindrical
plume is replaced by a sheet-like upwelling below the ridge.

Calculations have been done in a box with open bottom and right boundaries. Boundary
conditions are defined by

∂T

∂x
= u = σxz = 0 atx = 0,

∂T

∂x
= w = 0,

∂σxx

∂z
= ρg

or
∂T

∂x
= 0, u = ushear,

∂w

∂x
= 0

 at x = l x,

T = 1+1TP exp

(
−
(

x

1xP

)2
)
, u = ∂σzz

∂x
= 0 atz= 0,

T = 0, u = u0 tanh

(
x

xR

)
, w = 0 atz= 1,

with σxx, σxz, andσzz stress components. The shear-flow profileushear(z) is calculated by

d

dz

(
η̄

d

dz
ushear

)
= 0,

with ushear(0)= 0, ushear(1)= u0, and η̄(z) horizontal averaged viscosity. Atx= l x two
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FIG. 9. Stationary plume–ridge interaction with large local viscosity gradients (problem 4). Solution has been
obtained by the finite-volume multigrid method using the given nonuniform grid structure with four times more
grid cells than are shown, yielding grid spacing1x=1z= 1/64 in the corner-flow region of the ridge and in the
hot upwelling and1x=1z= 1/16 far away from the ridge. Only the left half of the model domain is shown.

different boundary conditions have been applied. The first one has been used in the finite-
volume multigrid method and in the finite-element method and the second one in the spectral
method. Model parameters are Ra= 40,000 based on viscosityη(T = 1, z= 0), 1TP=
0.15, 1xP= 0.06, u0= 200, xR= 0.05, and l x = 4, except l x = 2 in the spectral
method.

Problem 4 is defined by a temperature- and depth-dependent viscosity according to (4a)
with A= exp(−(E1+ E2)/(1+ E3)), E1= 18.504, E2= 4.884, andE3= 0.21. Viscosity
is limited to a maximum value of 100, yielding lateral viscosity variations of four orders of
magnitude within a small region near the ridge. Problem 5 is a modification of problem 4
with even larger viscosity gradients. All model parameters are the same, exceptE1= 46.261,
yielding lateral viscosity variations of five orders of magnitude.

The stationary solution of problem 4 is shown in Fig. 9. Velocity profiles obtained by the
different numerical methods are presented in Fig. 10. The finite-volume multigrid method
and the finite-element method produce nearly similar results. Convergence tests have re-
vealed that these solutions are close to the correct result. Both solutions have been obtained
on nonuniform grids with smaller grid spacing near the upper left corner. The structure of
the nonuniform grid used in the finite-volume multigrid method is shown in Fig. 9. Mesh
refinements with a factor of 4 smaller grid spacing have been introduced in the corner-
flow region of the ridge and in the hot upwelling. In the finite-element method the grid
spacing is nonequal in horizontal and vertical directions. Both grids contain approximately
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FIG. 10. Vertical velocity atx= 0 (top) and horizontal velocity atx= 0.25 (bottom) for problem 4 calculated
by the finite-element method using 39× 48 nonequally spaced grid points (dashed), by the spectral method using
96× 48 equally spaced grid points (dot-dashed) and by the finite-volume multigrid method using 2368 nonequally
spaced grid cells on the grid shown in Fig. 9 (solid).

FIG. 11. Vertical velocity atx= 0 (top) and horizontal velocity atx= 0.25 (bottom) for problem 5 calculated
by the finite-volume multigrid method using 256× 64 grid cells (dashed) and 96× 24 grid cells (dot-dashed) on
uniform grids and 2368 nonequally spaced grid cells on the grid shown in Fig. 9 (solid).
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the same total number of grid points. Because of the higher convergence order the finite-
element method is slightly more accurate than the finite-volume multigrid method. On the
other hand, the finite-volume multigrid method is approximately three times faster than the
finite-element method for this test problem (3.5 s compared to 9.2 s for 10 time steps on an
IBM RS/6000 58H workstation).

The solution of the spectral method differs strongly. A modified boundary condition
at the open right boundary has been used in order to apply the fast Fourier transforma-
tion. I have varied the aspect ratio of the box and the boundary condition at the right
boundary in the finite-volume multigrid method. It turned out that the solution in the
corner-flow region of the ridge is not influenced by the boundary condition. Therefore,
the differences between the solution of the spectral method and the other solutions cannot
be explained by different boundary conditions. It seems that the spectral method overes-
timates the viscosity in regions with large lateral viscosity variations. Increasing the grid
resolution does not lead to a significant improvement of the solution. Accurate results can
be obtained by the spectral method only if lateral viscosity variations are significantly
reduced.

The accuracy of the finite-volume multigrid method has also been determined for prob-
lem 5. Results on locally refined grids and on uniform grids are shown in Fig. 11. Large
numbers of grid cells have to be used on uniform grids in order to achieve good resolution.
Results on locally refined grids with fewer numbers of grid cells are nearly as accurate.
If the same number of grid cells are used on uniform and on nonuniform grids results on
nonuniform grids are significantly more accurate.

5. CONCLUSIONS

A finite-volume multigrid method for solving convection problems with variable vis-
cosity in 2-D and 3-D has been presented. The stability of the multigrid method for large
viscosity variations has been improved by using more complex multigrid cycles instead
of the most simple V cycle. The multigrid method becomes more stable if the number of
smoothing iterations on coarser grids is increased. Global viscosity variations of 1010 have
been considered.

A local mesh refinement technique has been presented which is more efficient and flexible
than previously used refinement methods. The nonuniform grid consists of uniform subgrids.
This method has been tested for various convection problems. Local mesh refinements can
improve the accuracy to a comparable amount as a global refinement of the grid. The
formulation of the algorithm allows a simple implementation of complex grid structures. It
enables one to introduce new mesh refinements or remove existing ones during calculation.
Therefore, it offers a simple possibility of adaptive grid refinements.

The accuracies of different numerical methods have been compared for a test problem
with large local viscosity gradients. Numerical methods based on a spectral approach are
often used for solving 3-D convection problems. However, it has turned out that spectral
methods lead to inaccurate results if the viscosity varies strongly. Therefore, they are not
suitable for geodynamical modeling with large viscosity variations. On the other hand,
the accuracy of the finite-volume multigrid method is comparable to the accuracy of a
third-order convergent finite-element method. The suitability of the finite-volume multi-
grid method for solving convection problems with strongly variable viscosity has been
shown.
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